Extraction of DNA on human bone powder

  • Muhammad Edhil Akbar Bur
  • Muhammad Tasri Hidayat
  • Isna Rasdianah Aziz
  • Setia Betaria Aritonang

Abstract

Bone is a dynamic network that has a complex cellular regeneration system. A forensic examination is closely related to examining the physiology and anatomy of the living body, including bone as the evidence in DNA testing. This study aims to analyze the DNA extraction on human bone powder using PrepFiler® BTA Forensic DNA Extraction Kit. DNA was isolated from compact and cancellous bone tissue from decomposed human bodies. The bones were soaked in NaOCl for 5 min, then rinsed with nuclease-free water. The bone was sawn into bone powder and then extracted using 220 µl of BTA lysis, 7 µl of Prot-K, and 3 µl of DTT. PrepfilerTM Lysis Buffer was added as much as 300 µl then homogenized by vortex and spin using a centrifuge. Spectrophotometry was performed to measure the DNA concentration using an absorbance from 230 nm to 320 nm. The results showed that the DNA purity values of the three samples of compact and cancellous bone powder used were close to good quality: 2.08, 2.06, and 1.71, respectively. Low concentration values obtained from compact bone samples were 14.2 ng/µL and 11.9 ng/µL respectively, which inversely proportional to cancellous bones by 59 ng/µL.

References

Abuidrees, A. S., Alhamad, N. A., Alsaadany, K. 2016. A suitable method for DNA extraction from bones for forensic applications: a case study. Arab Journal of Forensic Sciences and Forensic Medicine, 1(3), 346-352. http://dx.doi.org/10.12816/0026468.

Alfajri, M. I., Saamia, V., Witarto, A. B., Maya, R. I., Oktaviana, A., Wiranatha, I. M. 2018. Analysis the effect of different extraction methods towards the successfulness of amplification 24 loci short tandem repeat (STR): Study of forensic samples. In AIP Conference Proceedings. AIP Publishing LLC, 2002(1), 020039. https://doi.org/10.1063/1.5050135.

Andronowski, J. M., Mundorff, A. Z., Pratt, I. V., Davoren, J. M., Cooper, D. M. 2017. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach. Forensic Science International: Genetics, 28, 211-218. http://dx.doi.org/10.1016/j.fsigen.2017.03.002.

Applied Biosystem. 2012. PrepFiler® and PrepFiler® BTA Forensic DNA Extraction Kits. California: Life Technologies Corporation. p. 29-32.

Barbaro, A., Cormaci, P., Falcone, G. 2011. Validation of BTA™ lysis buffer for DNA extraction from challenged forensic samples. Forensic Science International: Genetics Supplement Series, 3(1), e61-e62. http://dx.doi.org/10.1016/j.fsigss.2011.08.030.

Bisseret, D., Kaci, R., Lafage-Proust, M. H., Alison, M., Parlier-Cuau, C., Laredo, J. D., Bousson, V. 2015. Periosteum: characteristic imaging findings with emphasis on radiologic-pathologic comparisons. Skeletal Radiology, 44(3), 321-338. https://doi.org/10.1007/s00256-014-1976-5.

Butler, J. M. 2005. Forensic DNA typing: biology, technology, and genetics of STR markers. Burlington: Elsevier Academic Press. pp 145-181.

Cartozzo, C., Singh, B., Boone, E., Simmons, T. 2018. Evaluation of DNA extraction methods from waterlogged bones: a pilot study. Journal of Forensic Sciences, 63(6), 1830-1835. https://doi.org/10.1111/1556-4029.13792

Cordonnier, T., Sohier, J., Rosset, P., Layrolle, P. 2011. Biomimetic materials for bone tissue engineering–state of the art and future trends. Advanced Engineering Materials, 13(5), B135-B150. https://doi.org/10.1002/adem.201080098.

Corte-Real, A., Silva, D. N., Vieira, D. N., Corte-Real, F., Anjos, M. J. 2015. Restored teeth can be used as samples for genotyping?. Forensic Science International: Genetics Supplement Series, 5, e293-e294. http://dx.doi.org/10.1016/j.fsigss.2015.09.116.

Dash H.R., Shrivastava P., Das S. 2020 Introduction to Forensic DNA Analysis. In: Principles and Practices of DNA Analysis: A Laboratory Manual for Forensic DNA Typing. Springer Protocols Handbooks. New York: Humana. https://doi.org/10.1007/978-1-0716-0274-4_1.

Emmons, A. L., Mundorff, A. Z., Keenan, S. W., Davoren, J., Andronowski, J., Carter, D. O., DeBruyn, J. M. 2020. Characterizing the postmortem human bone microbiome from surface-decomposed remains. PloS ONE, 15(7), e0218636. https://doi.org/10.1371/journal.pone.0218636.

Ferreira, S. T., Paula, K. A., Maia, F. A., Moraes, A. V. 2013. A comparative study between two protocols for DNA extraction from bones. Forensic Science International: Genetics Supplement Series, 4(1), e374-e375. http://dx.doi.org/10.1016/j.fsigss.2013.10.190.

Genecraft Labs. 2016. Genecraft Labs User Manual. Jakarta: Genecraft. pp 12–13.

Gill, S.C. and von Hippel, P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182, 319-326.

Harrel, M., Mayes, C., Gangitano, D., Hughes‐Stamm, S. 2018. Evaluation of a powder‐free DNA extraction method for skeletal remains. Journal of Forensic Sciences, 63(6), 1819-1823. https://doi.org/10.1111/1556-4029.13749.

Hines, D. Z. C., Vennemeyer, M., Amory, S., Huel, R. L. M., Hanson, I., Katzmarzyk, C., Parsons, T. J. 2014. Prioritized sampling of bone and teeth for DNA analysis in commingled cases. In Commingled Human Remains. Cambridge: Academic Press. pp. 275-305. https://doi.org/10.1016/B978-0-12-405889-7.00013-7.

Imaizumi, K., Taniguchi, K., Ogawa, Y. 2014. DNA survival and physical and histological properties of heat-induced alterations in burnt bones. International journal of legal medicine, 128(3), 439-446. http://dx.doi.org/10.1007/s00414-014-0988-y.

Jakubowska, J., Maciejewska, A., Pawłowski, R. 2012. Comparison of three methods of DNA extraction from human bones with different degrees of degradation. International Journal of Legal Medicine, 126(1), 173-178. https://doi.org/10.1007/s00414-011-0590-5

Joël, J., Glanzmann, B., Germann, U., Cossu, C. 2015. DNA extraction of forensic adhesive tapes—A comparison of two different methods. Forensic Science International: Genetics Supplement Series, 5, e579-e581. https://doi.org/10.1016/j.fsigss.2015.09.229.

Kaestle, F. A., & Horsburgh, K. A. 2002. Ancient DNA in anthropology: methods, applications, and ethics. American Journal of Physical Anthropology, 119(S35), 92-130. https://doi.org/10.1002/ajpa.10179.

Koetsier, G., & Cantor, E. 2019. A practical guide to analyzing nucleic acid concentration and purity with microvolume spectrophotometers. Massachusetts: New England Biolabs Inc. pp 1-8.

Kumar, N., Guar, V., Sharma, D., Shikla, S. K. 2016. Comparative evaluation of bone, teeth & blood gauzes in DNA analysis obtained from putrified unidentified dead bodies. Journal of Punjab Academy of Forensic Medicine & Toxicology, 16(2), 117-120.

Kuś, M., Ossowski, A., Zielińska, G. 2016. Comparison of three different DNA extraction methods from a highly degraded biological material. Journal of Forensic and Legal Medicine, 40, 47-53. https://doi.org/10.1016/j.jflm.2016.03.002

Latham, K. E., & Miller, J. J. 2019. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic sciences research, 4(1), 51-59. https://doi.org/10.1080/20961790.2018.1515594.

Lucena-Aguilar, G., Sánchez-López, A. M., Barberán-Aceituno, C., Carrillo-Avila, J. A., López-Guerrero, J. A., Aguilar-Quesada, R. 2016. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking, 14(4), 264-270. http://dx.doi.org/10.1089/bio.2015.0064.

Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory. New York: Cold Spring Harbor.

Mundorff, A., and Davoren, J. M. 2014. Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Science International: Genetics, 8(1), 55-63. https://doi.org/10.1016/j.fsigen.2013.08.001.

Notosoehardjo, I. 1999. Penentuan jenis kelamin berdasarkan pemeriksaan DNA dan antropometri tulang. [Disertasi]. Surabaya: Universitas Airlangga.

Pinhasi, R., Fernandes, D. M., Sirak, K., Cheronet, O. 2019. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nature Protocols, 14(4), 1194-1205. https://doi.org/10.1038/s41596-019-0137-7.

Quincey, D., Carle, G., Alunni, V., Quatrehomme, G. 2013. Difficulties of sex determination from forensic bone degraded DNA: A comparison of three methods. Science & Justice, 53(3), 253-260. https://doi.org/10.1016/j.scijus.2013.04.003.

Tartari, T., Bachmann, L., Zancan, R. F., Vivan, R. R., Duarte, M. A. H., Bramante, C. M. 2018. Analysis of the effects of several decalcifying agents alone and in combination with sodium hypochlorite on the chemical composition of dentine. International Endodontic Journal, 51, e42-e54. http://dx.doi.org/10.1111/iej.12764.

Yang, D. Y., and Watt, K. 2005. Contamination controls when preparing archaeological remains for ancient DNA analysis. Journal of Archaeological Science, 32(3), 331-336. http://dx.doi.org/10.1016/j.jas.2004.09.008.

Published
2021-05-30
Section
Original Research